
A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

www.ServotechInc.com

S o f t w a r e To o l s

MECHATRONICS, EMBEDDED CONTROL SOFTWARE, SYSTEM DESIGN,
ROBOTICS, EV POWERTRAIN, BATTERY MANAGEMENT SYSTEMS,

ELECTROHYDRAULIC MOTION CONTROL SYSTEMS, REMOTE CONTROL, AUTOMATION,
AUTONOMY, PERCEPTION SYSTEMS, HIL/SIL/MIL TESTING, INFORMATION

TECHNOLOGY AND BIG DATA AREAS CAD, FINITE ELEMENT ANALYSIS

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

YOUR INNOVATION DREAMS
POWERED BY

EMBEDDED SOFTWARE

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

R E C R U I T M E N T
We recruit top talent around the globe. We provide a work environment
that is based on habit of excellence, integrity and mutual respect for
ever yone. All of our business relationships are based on a “win-win”
principle for ever yone involved. We aim to be the best global technology
ser vices company in the world. Top talent is what we look for in our
recruitment. The candidates do not necessarily have to be exper ts in our
field. As long as the candidates have the intellectual talent and moral
values, we will teach them.

Our recruitment philosophy is based on what a famous college basket-
ball coach said: “We are looking for great athletes. We will teach them
how to dribble the ball”. Likewise, we are looking for smar test
engineers, we will teach them the details of our technology.

T R A I N I N G
With teamwork approach, we continuously train younger engineers by
our team of senior engineers. We believe in l ife long learning. Ever yday,
we get some work done, tr y to learn something new and better, and
have a l ittle fun while doing all that.

If you think you are one of the best talents in the world in your field,
and are interested in working in an environment where excellence and
integrity are the core values, we want you!

O U R O F F I C E S

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

Servotech Global
2nd cross, 2nd Main Rd, Stage 1,
Kengeri Sattelite Town, Bengaluru,
Karnataka 560070, India

Servotech A.S.
ITU Arikent, Suite 510
Istanbul, Turkey

Servotech Inc.
329 W. 18th. St. #301,
Chicago IL, 60616 USA

... WITH TEAMWORK APPROACH, WE
CONTINUOUSLY TRAIN YOUNGER

ENGINEERS BY OUR TEAM OF SENIOR
ENGINEERS. WE BELIEVE IN LIFE

LONG LEARNING...

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

E M BE D D E D S O F T W A R E

The software development and testing process has the following steps:
	 ∙	� Develop the control algorithm in Matlab/Simulink Environment. For

simulation purposes, develop a “plant” model.

	 ∙	� �Matlab/Simulink code can be fur ther extended with C/C++
functions using the S-functions inter face.

	 ∙	� Simulate, debug, test, and evaluate the control system in the non
real-time, Laptop’s Matlab/Simulink environment.

	 ∙	� Auto-code the control algorithm for the Target ECU: generates C code.

	 ∙	� Build the C code for the target ECU and generate executable code:
using the C Compiler tool.

	 ∙	� Download/Flash the executable code to ECU: using the Calibration
and Tuning Software tool.

	 ∙	� Run the code on the ECU, tune, calibrate, test, and validate it while
running on the ECU, using the Calibration and Tuning Software
on the Laptop PC.

UNMANNED
AERIAL VEHICLE

MEDICAL
EQUIPMENT

MICROWAVE
OVEN

AGRICULTURE
EQUIPMENT

CONTRUCTION
EQUIPMENT

ROBOTICS

AUTOMOTIVE

EMBEDDED SYSTEMS

AEROSPACE

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

E M BE D D E D S O F T W A R E
D E V E L O P M E N T T O O L S

E C U

P C

Embedded software is the vital component that is the “brains” in all of the
devices used in our civilization, from microwave ovens, cars, tractors to
airplanes. Embedded software is the program that runs on the embedded
controller hardware, referred to as ECU (electronic control unit) or ECM
(electronic control module), which is a printed circuit board (PCB) in one
package that includes a microcontroller, IO interface, and often power
amplifier circuits. The exact content and shape of the ECU vary depend-
ing on the application market, i.e. ECUs used in vehicle applications are
different that the ECUs used on microwave ovens or medical equipment.
The smarter the functionalities of the device, the more sophisticated the
embedded software needs to be.

As systems become more and more complex, so do the complexity of
embedded software. For instance, the embedded software on a micro-
wave oven is much simpler that the embedded software on a self driving
car. Equally important aspect of embedded software development is its
testing and validation; how do we make sure it is reliable. Extensive sim-
ulation testing technologies are utilized in testing and validation, such
as model in the loop (MIL), software in the loop (SIL), hardware in the
loop (HIL) testing. Depending on what is at stake (lives or inconvenience),
the extend to which embedded software is tested and validated varies in
different applications.

Embedded Software versus Non–Embedded Software
Embedded software is a type of computer software that is “embedded” in a device that we use.
The differences between “embedded software” and general purpose “software” are as follows:

	 ∙	� Embedded software deals with real world IO in real-time. A
few seconds or even milliseconds of delay can have serious
consequences, including loss of l ife, in some embedded control
applications. Whereas such delays in general software may
simply result in inconvenience to the user.

	 ∙	� Embedded software is the “brain” of a device. The smar ter the
“brain” is, the smar ter the device is.

	 ∙	� �Embedded software reliability is paramount impor tance be-
cause lives may be riding on it, hence must be tested exten-
sively using exhaustive testing techniques using MIL/SIL/HIL
technologies. Non- embedded software generally does not have
this strict requirement on reliability.

	 ∙	� As the markets demand more and more sophisticated devices,
with more reliability and lower cost, the embedded software
development task necessarily becomes more sophisticated,
must be reliable, and development cost must be low.

	 ∙	� Security is a fundamental concern for embedded software and
embedded computers, since vir tually ever ything will shor tly
have IIoT connectivity, opening a box for many oppor tunities as
well as security vulnerabilities.

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

M o b i l e M a c h i n e C o n t r o l S y s t e m
B a s e d o n C A N B u s

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

ECU
HMI
Joysticks
Pedals
Keypads
IO Interface Modules
Ethernet LTE GNSS Modem

Power and IO Connector Cables
CAN Bus Cables
Ethernet Cables
Programming USB/Ethernet Module Cables

Cables

Software
CODESYS Vxx SPyy Patch zz for each Master Device
CODESYS Add-on Device Support Libraries for Devices
CAN Bus Slave Nodes: EDS Files
Application Software for the Machine

Hardware

Applications

Mobile Machine Market: Tractors, Lift Trucks, Cranes, Dozers,
Backhoe Loaders, Telescoping Service Trucks, Excavators,
Wheel Loaders, Planting Machines, Sprayers, Harvesters,...

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

Engineering Process

Step 1:
Concept Design

Step 2:
Detailed Design

Step 3:
Build: Hardware Assembly and

Software Development with HIL

Step 4:

Debug, Test and Validate
on Machine

Working
Machine

Concept Design of the Proposed Control System
Estimated Project Cost
Detailed Design Cost

Bill of Materials
Electrical Wiring Diagrams
Hydraulic Circuit Diagrams
Application Software Requirements & Architecture
Updated Project Cost

Procurement of Bill of Materials
ELectrical Wiring of Control System Components
Application Software Developed and Tested in
HIL Environment

Working Control System
Documentation:
 Bill of Materials
 Wiring Diagrams
 Application Software
Maintenance Plan and Service Agreement

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

E M BE D D E D S O F T W A R E
D E V E L O P M E N T, T E S T I N G A N D V A L I D AT I O N

PHASE 1: D E S K T O P E N G I N E E R I N G – n o n - r e a l - t i m e , c o n c e p t , m o d e l i n g , a n d s i m u l a t i o n

PHASE 2: H I L T E S T I N G – r e a l - t i m e

PHASE 3: O N M A C H I N E T E S T I N G – P r o t o t y p e m a c h i n e t e s t i n g

P C

E C U

E C U

 H I L S i m u l a t o r

P C

C o n t r o l l e r
I n p u t s

P C

P l a n t s
I n p u t s

F e e d b a c k Pa t h

P l a n t s

O u t p u t s
C o n t r o l l e r P l a n t

G U I S o f t w a r e
Te s t A u t o m a t i o n
S o f t w a r e

C A N B u s A c e s s S o f t w a r e :
R / W D a t a R a m
– p a r a m e t e r s – s i g n a l s

C A N B u s A c e s s S o f t w a r e :
R / W D a t a R a m
– p a r a m e t e r s – s i g n a l s

t ructgroup_infoini t_groups={.usage=-
ATOMIC_INIT(2)} ;
structgroup_info*groups_al loc(intgidsetsize){
structgroup_info*group_info;
intnblocks;
int i ;
nblocks=(gidsetsize+NGROUPS_PER_BLOCK-1)/
NGROUPS_PER_BLOCK;
/*Makesurewealwaysal locateat leastonein-
directblockpointer*/
nblocks=nblocks?:1;
group_info=kmal loc(sizeof(*group_info)+nblocks*-
s izeof(gid_t*) ,GFP_USER);
i f (!group_info)
returnNULL;
group_info->ngroups=gidsetsize;
group_info->nblocks=nblocks;
atomic_set(&group_info->usage,1);
i f (g idsetsize<=NGROUPS_SMALL)
group_info->blocks[0]=group_info->smal l_block;
else{
for(i=0; i<nblocks; i++)

tructgroup_infoini t_groups={.usage=-
ATOMIC_INIT(2)} ;
structgroup_info*groups_al loc(intgidsetsize){
structgroup_info*group_info;
intnblocks;
int i ;
nblocks=(gidsetsize+NGROUPS_PER_BLOCK-1)/
NGROUPS_PER_BLOCK;
/*Makesurewealwaysal locateat leastonein-
directblockpointer*/
nblocks=nblocks?:1;
group_info=kmal loc(sizeof(*group_info)+nblocks*-
s izeof(gid_t*) ,GFP_USER);
i f (!group_info)
returnNULL;
group_info->ngroups=gidsetsize;
group_info->nblocks=nblocks;
atomic_set(&group_info->usage,1);
i f (g idsetsize<=NGROUPS_SMALL)
group_info->blocks[0]=group_info->smal l_block;
else{
for(i=0; i<nblocks; i++)

A n embedded control software is developed in three main phases.

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

PHASE 3–
In Phase 3, The ECU is tested and tuned on an actual prototype machine. The I/O inter faces, sensors, actuators, and software
logic are verified and calibrated. The control algorithm parameters are fur ther tuned to optimize the dynamic per formance.
The machine's per formance and reliability are compared to benchmark results, and the results are documented for production
release. Matlab/Simulink files can be auto- code generated and flashed into the ECU using a laptop PC and a USB/CAN bus
inter face module. The laptop PC connects to the ECU's CAN bus, and MCD software tools implement communication protocols
to read/write data memor y locations of the ECU.

Various software tools l ike CANalyzer and CANape are used for HIL testing, enabling monitoring, test condition definition,
data collection, and result analysis. These tools facil itate memor y read/write access, test plan execution, and automation of
test and validation processes.

PHASE 2–
In Phase 2, the control software is tested on a target ECU using a Hardware-in-the-Loop (HIL) system. The software is
auto-generated into C- code from the Simalink. The embedded control software runs on the ECU in real-time, as it will on the
actual machine ECU. The HIL system simulates the behavior of the actual system and provides real-time input and output
signals to the ECU. The plant model is simplified compared to Phase 1 to run in real-time. The HIL system hardware emulates
the actual machine's signals. HIL testing allows for the identification and resolution of problems before testing on the actual
machine. It is cost- effective and safer than testing on a prototype machine, especially for l ife- critical applications. The HIL
system provides repeatability and allows for testing under extreme conditions that cannot be easily created in the real world.
HIL testing is an intermediate step between pure software simulation and pure hardware testing.

HIL testing can be per formed by independent engineering teams or companies, providing objective and exhaustive testing. It
offers cost savings, better safety, and test repeatability. HIL testing by independent organizations is especially impor tant for
OEMs in order to assure impar tial testing and validation of their products.

PHASE 1–
In Phase 1 of the development process, the control software for the electronic control unit (ECU) is created using software
tools l ike Matlab, Simulink and Stateflow. The software is simulated and analyzed on a non-real-time desktop environment. A
detailed dynamic model of the machine called the "plant model," is used for accurate simulations. The software is developed
in different layers with defined inter faces between them, including a hardware I/O layer, core logic layer, and application lay-
er. The software contains both the logic, such as control algorithms, and parameters, such as gains for the control algorithm.

E M BE D D E D S O F T W A R E
D E V E L O P M E N T, T E S T I N G A N D V A L I D AT I O N

A n Embedded controller is a rugged computer hardware , which may include power amplifica tion
c ircuit, with an applica tion-spec ific software. The embedded controller hardware, also called
Elec tronic Control Unit (ECU) or Elec tronic Control Module (ECM), is ra ther standard provided by
various suppliers to Original Equipment Manufac turers (OEM). The ECU software, however, is
always applica tion-spec ific and custom developed for each applica tion by an OEM.

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

H I L T E S T I N G

Why is HIL Software Testing impor tant?
1. �HIL testing enables software engineers to test

their programs in a virtual setting that closely
mimics the actual hardware environment.

2. ��By detecting and resolving any flaws early in
the development process, HIL testing can help
to shorten development time and reduce costs.

3. ��An Extensive sets of scenarios can be tested
in an automated process that cannot be
tested on the actual hardware.

Improve Software Quality & Reduce the Risk of System Failure
Before the embedded software is installed on the actual hardware, HIL testing enables engineers to detect and fix errors
in software. This decreases the possibility of system malfunctions, security hazards, and expensive recalls.

Reduced Development Time and Cost
By finding and fixing any errors or efficienc y problems early on in the development process, HIL testing can help reduce
development time and expenses. This reduces the need for expensive revision by ensuring that the software will operate
properly and securely in the real-world environment.

Inc reased Test Coverage
Using HIL testing technology, that closely resembles the real hardware environment in which the software will work,
enables increased test coverage, including tests that cannot be done on actual hardware, i .e. what happens if one
of the wings of the airplane breaks off.

E m b e d d e d C o n t r o l
S o f t w a r e

P l a n t M o d e l
R e a l - Ti m e S i m u l a t i o n

 H I L S i m u l a t o rE C U

Mechatronic System Design refers to the synergistic integration of three distinct traditional
engineering fields for system-level design processes:

1. Mechanical engineering where the word “Mecha” is taken from,
2. Electrical or electronics engineering, where “Tronics” is taken from,
3. Computer science.

A mechatronic system is a computer-controlled mechanical system, where the computer is an
embedded computer, not a general-purpose computer, that is used for control decisions, and
interfaced to the real world device via sensors and actuator interfaces.

info@ServotechInc.com www.ServotechInc.com

Mechatronic System Design

A mechatronic system has the following components:

Mechatronic system design begins with the concept of mechanical system design that includes
electrically controlled actuators, and sensors to measure variables that need to be controlled.
Good design based on sound scientific and engineering principles forms the foundation of the
overall quality of the system design. Computer control should always enhance the system
capabilities, instead of trying to compensate for poor mechanical designs.

Once the hardware design is done, the next component of the system that defines its “brains”
(intelligence) is the embedded software that goes into the ECU. Often, the ECU hardware,
actuators, and sensors are standard off-the-shelf components. Software is always
application-specific. Furthermore, as there is no limit on intelligence, then there is no limit on
how “smart” and reliable we can design application software. It is common that over eighty
percent of all mechatronic design engineering time is spent on software development.

Embedded software is different than general-purpose software in many different ways, even
though they are both software; such as

Because of these critical requirements, expertise, discipline, experience, and pure intellectual
capabilities of the development team is the most critical element of product development.

1. Mechanical system (i.e. EV power train)
2. Control computer (i.e. ECU)
3. Sensors (i.e. speed)

Embedded software must run in real-time, and there can be life-and-death consequences
of a few seconds of delay.

Embedded software must be reliable as lives may be riding on it.

Embedded software has limited CPU and memory resources.

info@ServotechInc.com www.ServotechInc.com

Mechatronic System Design

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

M E C H AT R O N I C
S Y S T E M D E S I G N

Mechatronic system design begins with the concept of mechanical system design that includes electrically controlled actu-
ators, and sensors to measure variables that need to be controlled. Good design based on sound scientific and engineering
principles forms the foundation of the overall quality of the system design. Computer control should always enhance the
system capabilities, instead of tr ying to compensate for poor mechanical designs.

Once the hardware design is done, the next component of the system that defines its “brains” (intelligence) is the embedded
software that goes into the ECU. Often, the ECU hardware, actuators, and sensors are standard off-the-shelf components.
Software is always application-specific. Fur thermore, as there is no limit on intelligence, then there is no limit on how
“smar t” and reliable we can design application software. It is common that over eighty percent of all mechatronic design
engineering time is spent on software development.

Embedded software is different than general-purpose software in many different ways
even though they are both software
Embedded software must run in real-time,
and there can be life-and-death
consequences of a few seconds of delay.

Embedded software must be reliable
as l ives may be riding on it.

Embedded software has l imited
CPU and memor y resources.

Because of these critical requirements, exper tise, discipline, experience, and pure intellectual capabilities of the
development team is the most critical element of product development.

A mecha tronic system has the
following components:
1. Mechanical System (i.e. EV power train and ac tua tors)
2. Sensors (i.e. speed sensors)
3. Control Computer (i.e. ECU)

1 . M e c h a n i c a l
S y s t e m

3 . �C o n t r o l
C o m p u t e r

2 . S e n s o r s

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

E M BE D D E D CO N T R O L
S O F T W A R E D E V E LO P M E N T

1. Laptop PC 2. USB/CAN Inter face Module

1. Windows 10 (64 Bit)

2. Matlab

3. Simulink

4. Matlab Coder

5. Simulink Coder

6. Embedded Coder

7. Simulink Block Set for ECU Suppor t

8. C Compiler (for target ECU i.e. Wind River)

9. Calibration and Tuning Software, i .e.
CANape by Vector

D i ff e r e n t i a l

B a t t e r y
Pa c k

V C U : E C U

C A N 1

C A N 2

E C U

I n p u t s

D e v e l o p
C o n t r o l

A l o g r i t h m
S i m u l a t e

A u t o c o d e
B u i l d

D o w n l o a d / F l a s h
E C U Tu n e a n d

C a l i b r a t e A l g o r i t m

M a t l a b
S i m u l i n k

M a t l a b C o d e r
S i m u l i n k C o d e r

E m b e d d e d C o d e r

O p e n E C U S i m u l i n k
B l o c k s e t

C c o m p i l e r :
W i n d R i v e r

D i a b C C o m p i l e r
o r

B B C C o m p il e r

C a l i b r a t i o n
S o f t w a r e To o l :

P i S n o o p

O u t p u t s

U S B C A N

I n v e r t e r

and
Motor Pack

P R O C E S S

C A N

T O O L S

Hardware

Software on the Laptop PC

The Embedded Software Development Tools

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

E M BE D D E D CO N T R O L
S O F T W A R E D E V E LO P M E N T

The embedded software development and testing process
consists of several steps, which are as follows:
1. Develop the control algorithm in the Ma tlab/Simulink environment:
 In this step, the control algorithm is designed and implemented using the Matlab/ Simulink software. The algorithm is

typically developed using a graphical inter face, allowing for easy visualization and manipulation of the control logic.

2. Simula te, debug, test, and evalua te the control system:
 Once the control algorithm is developed, it is simulated in the non-real-time environment of a laptop using Matlab

Simulink. This allows for thorough testing and evaluation of the control system's per formance under di erent scenarios
and inputs. Any issues or bugs in the algorithm can be identi nd debugged at this stage.

3. Auto-code the control algorithm for the Target ECU:
 After the control algorithm has been veri through simulation, it is auto- coded to generate C code. Auto- coding is the

process of automatically translating the algorithm from the Matlab/Simulink environment into executable C code that can
run on the target Electronic Control Unit (ECU).

4. Build the C code for the target ECU and genera te executable code:
 In this step, the generated C code is compiled using a C Compiler tool. The compiler translates the human-readable

C code into machine-readable binar y code that can be executed by the target ECU.

5. Download/Flash the executable code to ECU:
 Once the C code is compiled and transformed into executable binar y code, it needs to be do nto

the target ECU. This process involves transferring the code from the development environment to the ECU using
specialized tools and protocols.

6. Run the code on the ECU, tune, calibra te, test, and valida te it:
 After the executable code is loaded onto the ECU, the control system is executed on the actual hardware. The system is

tuned, calibrated, tested, and validated in real-time using Calibration and Tuning Software running on a laptop PC. This
allows for ne-tuning of control parameters per formance
evaluation, and validation of the control system's behavior under real-world conditions. HIL Testing is highly e ective
before testing on an actual vehicle.

Overall, these steps ensure a systema tic approach to developing and testing control systems,
star ting from algorithm development and simula tion, to auto-coding, building, downloading,
and nally valida ting the control system on the target ECU.

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

M O D E L - B A S E D D E S I G N
U S I N G M AT L A B A N D S I M U L I N K

In the realm of modern engineering, the concept of Model-Based Design (MBD) emerges as an
effic ient, accura te, and collabora tive development processes. Central to this approach is the
synergy between MATL AB and Simulink, two software tools tha t uphold the intrica te architec ture
of MBD, shaping the way complex systems are designed.

Understanding Ma tlab and Simulink
Matlab and Simulink, developed by MathWorks, are integral to Model-Based Design.

Ma tlab: �A high-level programming language, Matlab is widely used for mathematical computations,

data analysis, and algorithm development.

Simulink: A graphical environment, Simulink allows users to model, simulate, and analyze.

· �S Y S T E M M O D E L D E V E L O P M E N T
S y s t e m , S u b - S y t e m s , C o m p o n e n t s

· �C O N T R O L S O F T W A R E D E V E L O P M E N T
S i m u l i n k , S - F u n c t i o n s

· S I M U L A T I O N G U I

· S I M U L A T I O N , A N A LY S I S , O P T I M I Z A T I O N

· F L A S H C O D E T O E C U , D E B U G & T U N E

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

M O D E L - B A S E D D E S I G N
U S I N G M AT L A B A N D S I M U L I N K

Fundamentals of MATL AB and Simulink

Building Ma thema tical Models:
MBD's foundation rests on translating abstract concepts into tangible forms—an interplay of equations and symbols within
MATLAB. MATLAB's symbolic mathematics shapes models into Simulink- compatible elements, setting the stage for system
realization.

Dynamic System Simula tion:
Simulink transforms block diagrams into an engineer's playground, sculpting the behavior of dynamic systems. These
graphical arrangements interconnect system components, choreographing a simulation-ready per formance.

Control System Design and A nalysis:
Simulink hosts the choreography of precision in control system design. Crafting algorithms and tuning controllers become
ar tistic pursuits on a vir tual stage. Engineers compose symphonies of responses, obser ving the harmony between stability
and per formance.

Model Valida tion and Verifica tion:
Prior to the real-world debut, validation and verification take the spotlight. Simulations meticulously test scenarios and
probe model boundaries, ensuring accurac y. This meticulous process guarantees a reliable per formance.

Real-Time Code Genera tion:
MBD's pinnacle arrives as vir tual elegance transforms into reality. Simulink's magic conver ts models to code, then to l ife.
Embedded systems embrace the code, as algorithms infuse hardware with vitality.

Rapid Prototyping and Itera tion:
Rapid Prototyping and Iteration: Prototypes, swift and ephemeral, materialize in moments. Iteration is their rhythm, a dance
between adjustments and insights. MBD offers engineers a pas de deux with time, fostering innovation through rapid c ycles
of modification, simulation, and refinement.

MBD finds applica tions in various industries:

Automotive
Design and test vehicle
control systems.

Aerospace
Develop flight control
systems and avionics.

Medical Devices
Design and simulate
medical equipment
and devices.

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

A U T O N O M O U S
V E H I C L E CO N T R O L S Y S T E M

The self- driving car decides on the command signal to subsystems (throttle command, brake command, steering command)
based on large collection of sensors. Each sub-system then would have its own closed or open loop local controllers to
achieve the command signals. This requires the car to have an electronically controlled power train, and an electronically
controlled steering system (which is called an “x-by-wire” control system). The biggest challenges in this technology is the
accurate detection of other cars and objects around the car and road conditions.

This is referred to as the ”perception” problem in autonomous driving. If we can accurately determine the actual road con-
ditions, then in the software we can decide what to do. The intelligence of the self- driving car is the sensors and software
running in the on-board embedded controllers (multiple embedded controllers with a local communication network, such as
CAN bus) as well as the ser ver software running in cloud computing platform on internet- connected supercomputers to assist
and super vise millions of self- driving cars. It is impor tant to note that the software involved in autonomous vehicle control
involves software running on typically embedded controllers on the vehicle and software running on ser vers on the internet
which communicates with the embedded controllers in real-time.

Line Keeping

Adaptive Cruise
Control

Auto parking
Rear View Camera

Camera Vision

Radar Sensor

Ultrasonic Sensors Lidar

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

A U T O N O M O U S
V E H I C L E CO N T R O L S Y S T E M

Current developments are grouped under the name of
“autonomous driver assistance systems” (ADAS).
It is a huge challenge to develop sufficient confidence in embedded software to make completely autonomous control
decisions and take control actions. Therefore, the current trend is to release these capabilities as autonomous (or automatic)
driver assistance systems (ADAS). The ADAS software module are developed as real-time embedded signal processing algo-
rithms that take the processed sensor y data (GPS, camera, radar/lidar, ultrasonic sensors, etc.) and make decisions, then send
control signals to the engine-transmission / EV motor- drive, brake, and steering sub-systems. Standardized approaches to
software development are developed and practiced (i.e. AUTOSAR) in terms of communication between modules and software
layers and are intended to increase reliability and reduce development costs by increasing reusability.

A u t o m a t i c
Pa r k i n g

A u t o m a t i c l i n e - k e e p i n g
a n d b l i n d - s p o t

w a r n i n g s y s y t e m

A d a p t i v e
C r u i s e C o n t r o lA u t o m a t i c b r a k i n g t o

a v o i d c o l l i s i o n s

A u t o m a t i c s t e e r i n g t o
a v o i d c o l l i s i o n

(adjust speed automatically to maintain a certain
distance from the cars in front, then resume desired
cruise speed when there are no other vehicles within
a certain distance in front)

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

C A D / F E A
D E S I G N A N D A N A L Y S I S

Computer Aided Design (CAD) software tools (i .e. AutoCAD, Inventor, SolidWorks, Creo) are used to
design the mechanical system using 3D solid modeling, geometric dimensioning and tolerancing
standards and practices, animation for geometric functional validation, integration to Finite Element
Analysis (FEA) software tools for analysis, integration to controllers for Hardware-in-the-Loop (HIL)
testing visualization.

Finite element analysis (FEA) software tools implement the physics-based mathematical equations
and numerical solutions in the background. All general-purpose FEA software tools (ANSYS, Abacus,
etc.) provide a graphical user interface (GUI) to de�ne the problem and desired simulation conditions:
that is to de�ne the 3D geometry, material properties (i .e. a rectangular plate made of cas
 aluminum), simulated conditions (external load conditions and boundary conditions). Then the FEA
software provides tools to automatically customize �nite element mesh, constructs the physics-based
equations, and solves them using a selected numerical solution method.

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

 C A D / F E A
D E S I G N A N D A N A L Y S I S

The results are then presented in the form of �eld variable distribution over space (for static simulations)
and time (for dynamic simulations). For instance, the simulated results can be stress, strain, temperature,
pressure, and �uid speed as a function of location in space (x,y,z) and time.

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

I T S E R V I C E S

In the modern business landscape, the ability to make informed decisions quickly is
paramount. Servotech is at the forefront of this evolution, o�ering comprehensive support to
our customers throughout the entire decision-making process. From data capture to analysis
and actionable insights, we ensure that every step leads to smart, data-driven business
decisions.

From capturing the data, analyzing the data with state of art data analytics software tools, to decisions made, Servotech
supports our customers through each step that will lead to smart business decisions.

A w a r d W i n n i n g E n g i n e e r i n g S e r v i c e s

E m a i l : i n f o @ S e r v o t e c h I n c . c o m | P h o n e : 3 1 2 - 3 7 6 - 8 1 0 3 | w w w. S e r v o t e c h I n c . c o m

I T S E R V I C E S

Capturing and Analyzing Data
The journey toward smarter business decisions begins with the accurate capture of real-time data. Servotech
employs advanced sensors and cutting-edge data acquisition systems to collect vast amounts of real-time data
from engineering systems. This data, often referred to as “big data,” is then processed using state-of-the-art data
analytics software tools. These tools leverage sophisticated mathematical algorithms and statistical methods,
enhanced by arti�cial intelligence, to analyze and interpret the data e�ciently.

A Paradigm Shift in Product Support and Maintenance
The exponential growth in the availability of real-time data has revolutionized product support and maintenance
strategies. No longer do businesses rely solely on reactive maintenance practices. With real-time sensor data at
their disposal, companies can now adopt predictive and prescriptive maintenance models. This shift not only
enhances operational e�ciency but also minimizes downtime, leading to signi�cant cost savings and prolonged
equipment lifespan.

Optimizing Operations and Engineering Design
Real-time data analytics extends beyond maintenance. By continuously monitoring system conditions, businesses
can identify potential weaknesses in engineering designs. This proactive approach allows for timely design
modi�cations, ensuring that products remain robust and capable of meeting evolving challenges. The insights
gained from real-time data empower businesses to optimize operations and make informed decisions regarding
engineering design changes.

Servotech’s expertise in data capture, analysis, and application is instrumental in driving smart business
decisions. By harnessing the power of real-time data, we help businesses optimize their operations, enhance
maintenance strategies, and continuously improve product designs. This holistic approach ensures that our
customers are equipped to make decisions that lead to sustained growth and success.

	Mobile Machine Control System Based on Can Bus (4).pdf
	Servotech_Brochure_2024_V5.pdf
	Servotech_Brochure_2024_R5.pdf
	Embedded Control Software Development-Servotech.pdf
	Servotech_Brochure_2024_R4.pdf
	Binder1.pdf
	Servotech_Brochure_Pages_1_2
	Servotech_Brochure_2024_R3.pdf
	Can Bus Testing, Diagnostics, and Validation Engineering-ServotechInc (2)

	Binder2.pdf
	Servotech-Brochure-10-CAD-FEA
	Servotech-Brochure-12-EH-System-Design-PlaceHolder
	Servotech-Brochure-13-Precision Farming Technology
	Servotech-Brochure-14-Big-Data

	Mobile Machine Control System Design (1).pdf

